Proceedings of International Conference on Heat Exchanger Fouling and Cleaning - 2015 (Peer-reviewed)

June 07 - 12, 2013, Budapest, Hungary

Editors: M.R. Malayeri, H. Müller-Steinhagen and A.P. Watkinson

Publishe d online

www.heatexchanger-fouling.com

INCREASED SHEAR, REDUCED WALL TEMPERATURES, USE OF hiTRAN WIRE MATRIX INSERTS IN SYSTEMS SUBJECT TO FOULING 汚れ問題のあるシステムにhiTRAN立体ワイヤーを挿入した場合の壁面ずり応力と壁面温度

p. Drogemuller¹ W. Osley¹ and D. PhiUpp²

¹ Cal Gavin LTD, Minerva Mill Technology Centre, Station Road, Alcester, B980PW, UK Peter.Droegemueller@calgavin.com, William.Osley@calgavin.com

²Technische Universitat Braunschweig, Institut efor Chemical and Thermal Process Engineering (ICTV)

要約

汚れの特徴は熱と流体力学境界層の特性に大き く影響される。本報は hiTRAN のような管側伝熱促 進素子が、壁面温度と壁面ずり速度の両方に影響す る道具として使えることを述べる。レーザー・ドッ プラー速度計実験装置と hiTRAN ワイヤー素子の壁 面ずり速度の直接測定が提示された。これらの測定 結果は CFD シミュレーションで、検証された。これ らの結果良い一致を示し、この種の挿入体の適用は 壁面せん断応力の増加を示している。hiTRAN 素子 を熱交換器設計で使用する主たる動機は、管側伝熱 の大幅な増加である。熱伝達の速度を上げる直接的 な結果として、管壁面温度が変化し、さらに汚れ挙 動を変える。実際に原油の汚れのシナリオに使用さ れた hiTRAN は、壁面せん断応力を低下し、壁面温 度を低下させることで、この工程の全体的な負荷を 改善する。

緒言

研究の中心は、汚れ挙動を決定する因子を確認 するために実施されてきた。その結果準経験的な汚 れのモデルが開発された。経時的な原油の汚れ挙動 を記述するために、Ebert&Pannchal モデル

(1997) とその変化系が成功裏に適用された。これ らのモデルは管側流体の化学反応汚れとみなして開 発された(Wilson et al., 2012)。閾値条件に達するた めの管挿入体を使用した幾つかの研究も提案されて いる(Mengyan st al, 2012)。この種のモデルの共通 項は、堆積と抑制の折り合いである。脱塩装置下流 の原油の汚れは、より高い温度で増加する汚れ成分 の化学反応による化学反応汚れであると特定されて いる。この堆積条件は流体の境膜温度に大きく影響 される。この抑制の条件は、汚れの堆積と既に形成 された堆積物の除去に、壁面応力がどのように影響 するかで決まる。

$$\frac{dR_f}{dt} = \alpha R e^{\beta} \exp\left(-\frac{E_a}{RT_f}\right) - \gamma \tau_W \tag{1}$$

図1に示したように、何もしなくてもこの種の モデルは、技術プロセスの中での境膜温度と壁面ず り応力のみで、完全な汚れの抑制の出来ることを示 している。汚れの因子、α、β、γおよび活性化エ ネルギーEa は、実験またはプロセスデータから決定 されるものである。

空洞管の熱交換器委設計では、プロセスと形状 と物性条件によって、壁面温度と壁面温度の変数が 決定される。hiTRAN 管挿入体は、これら2つの変 数に対し、有益に影響するために用いることが出来 る。

hiTRAN ワイヤー立体素子

hiTRAN 技術(図 2)は、効果的に管側流の乱 流増加をするため用いられる。主たる適用範囲は層 流と遷移領域であるが、システムが追加の圧力損失 を許容出る場合、乱流領域でも用いられる。挿入体 の充填密度を変化することで、圧力損失と伝熱性能 は、プロセス条件に合わせることが可能である。既 にこの種の挿入体は、汚れ対応に適用され成功して いる。(Gough et al., 1995, Ritchie et al., 2007)

図2. 典型的な hiTRAN ワイヤー立体素子.

伝熱における壁面温度の影響

単相流試験装置による管側伝熱測定が、広い範 囲の充填密度をもつ hiTRAN の管側性能を測定する ために実施された。

図3は高・低2つの充填密度のhiTRAN 挿入体 の伝熱性能をレイノルズ数の関数として示してい る。全範囲のhiTRAN 形状の伝熱と圧力損失のため の、熱的と流体性能データは、CalGavin 社からソフ トウエア hiTRAN.SP として提供されている。層流 領域では16倍、乱流領域でも2から4倍の伝熱性

図3. 典型的な2つの密度の hiTRAN の伝熱性能

能の増加が観察できる。壁面抵抗と汚れ層(抵抗) を無視すれば、壁面温度は次のように表せる。

$$T_{w} = T_{o} - \left(\frac{h_{i}}{h_{i} + h_{o}}\right) \cdot \left(T_{o} - T_{i}\right)$$
⁽²⁾

管側の伝熱係数が増加すると、壁面温度は管側 の平均温度に近づく。管側熱せられる場合、より低 い壁面温度が達成できる。管側熱伝達の増加は、図 1における汚れ無しの領域に移動するのに役立つ。

hiTRAN の壁面せん断応力

空洞管の場合、壁面せん断応力τwは、圧力低 下∠pに直接関係する。

$$\tau_W = \frac{4\,\Delta p\,D}{L} \tag{3}$$

管挿入体を採用した場合、挿入体の形状による抗力 とせん断応力によって、相当量の圧力低下が誘発さ れる。これら力は、圧力低下の測定に基づく、壁面 せん断応力を決定するものであることが知られてい る。本報では、3つの独立した測定方法と、hiTRAN 挿入体の存在する場合の管壁面せん断応力の計算方 法を記述する。

流速場の測定による壁面せん断応力の計算

壁面剪断応力は、管壁の近くの流速場と直接関 係している。:

$$\tau_W = \eta \frac{du}{dy} \tag{4}$$

図4. レイノルズ数500で、hiTRANを挿入した標準速 度のプロフィール 空洞管:黄色線-乱流、ピンク線 一層流のプロフィール

Smeethe等の(2004)のレーザー・ドップラー速度 法(LDV)データが、再評価された。彼らはhiTRAN挿 入体のすぐ下流の速度プロフィールを測定した。トレー サー用のアルミニウム粒子がスリップ無しに流体に加え られ、2重交戦レーザーが当てられた。この技法で、ト レーサー粒子の速度が測られ、流速のプロフィールが測 定された。流速のプロフィールは、測定されたレイノル ズ数条件下でも層流に比べて、その管壁面で、より急な 速度勾配du/dyを示している。(図4)実際に、レイノ ルズ数500における壁面近くのhiTRANの速度勾配は、ほ ぼ乱流状態に同じであった。

図5. レイノルズ数の異なる一定密度の挿入体と空洞管 理論値の数近傍の速度プロフィール

Heat Exchanger Fouling and Cleaning - 2013
 レイノルズ数の異なる空洞管と中間の密度を持つ挿
 入体の壁の近傍の詳細な測定が実施された。この結果は
 図5に示されている。

層流状態の標準化された空洞管の速度勾配du/dy は、~0.2:1/s程度と測定され計算されている。レイノ ルズ数3000の繊維状態流れでは、この値は約0.275:1/s である。hiTRANのある場合はより急勾配で、表1のよ うに、空洞管に比べて、2.9倍も高い壁面せん断応力を 生成する。

表1. ある挿入体形状を持つ場合のせん断応力の倍率

Reynolds	du / dy [1/s]	Multiplier [-]
100	0.4	2
500	0.55	2.75
3000	0.8	2.9

挿入体に掛かる力の測定による壁面せん断応力計算

別々に組み立てられた実験装置で、挿入体全長に加 わるせん断応力が測定された。

この組み立てにおいて、挿入体は、いかなる突き出 しの圧力無しで、そのループが管壁に丁度触れているよ うな方法で、設置される。大きな流量範囲を測定するた めに、水と水-グリセリンの混合物が使用された。ロー ドセルは挿入体に流体の流れによって加わる引っ張り力 を測定する。(図6)加えて、挿入体長さ全体への圧力 損失も測定される。全体の壁面せん断応力は、式5によ って計算できる。 $F_{\text{wall shear}} = \Delta p \cdot A_{\text{cross section}} - F_{\text{form drag}}$ (5)

壁面せん断応力(τ_{wal})は、測定されたせん断力 (F_{wall shear})を、挿入体の占める管表面積で割り算する ことで、計算される。個々の形状をもつ挿入体の無次元 数壁摩擦係数は、次式によって計算することが出来る。

この手法を使うことにより、hiTRAN挿入体の無次 元壁面摩擦係数は、測定が可能で、図7に示した空洞管 の摩擦係数と比較される。

このデータポイントをつなぐことで、各挿入体形状 の摩擦係数の相関性を見つけることが出来る。図8.に は空洞管と比較して、壁面せん断力が倍率として表され ている。青色と赤色の間の面積は、低密度から高密度の hiTRANが作用する範囲である。

図8. に見られるように、最高の増加は層流と乱流 の遷移状態の直前に認められる。ここでは空洞管に比較 して、7倍のせん断応力が測定されている。表1のレー ザー実験による中密度の測定データも、この結果とよく 一定している。

CFDによる壁面ずり応力

2つの実験方法とは別に、CFDがこの挿入体の流動 挙動を計算するために採用された。本報で用いたCFDソ フトパッケージには、ANSYS CFXが使用された。挿入 体の形状は、ANSYS設計モデラーで描画された。メッ シュを容易に切るための幾らかの単純化が実施された。 その形状はそしてANSYSメッシュソフトウエアを使っ てメッシュ化された。メッシュの独立性の検証は、個々 の形状に適用され、十分に精度の高いモデルであること が確認された。せん断応力移送(SST: Shear Stress Tranceport)乱流モデルが、その値がk-ε 乱流モデルに 比べて壁面近くでより正確な値となるまで、乱流領域で 用いられた。

計算は等温条件下で実行され、物性、形状、プロセ ス条件は、せん断力実験とほぼ同じであった。図9は典 型的な層流の計算値を示したもので、壁面近傍で急激な 速度勾配を持つところが、LDV測定プロフィール(図 4)と非常に良く似ている。

この局所的な壁せん断応力の計算結果と測定データ は、全体の管表面積に対して積算される。この結果は CFD計算による平均せん断応力である。図10には、補 正壁面せん断応力が、CFD計算の別個のデータポイント と比較して、レイノルズ数の関数として比較されてい る。

図10. 測定データの補正壁面せん断応力と CFD シミ ユレーション:中密度(赤点線)と高密度(青点線) hiTRAN

高密度挿入体の CFD 計算値は、補正測定値と非常 に良き一致している。中密度の挿入体の場合、CFD 計 算値は極わずかであるが測定データを上回っている。測 定データに対する CFD シミュレーションの確認によ り、次の段階では各部位におけるせん断応力を研究する ことが出来る。空洞管の壁面応力に比べて、hiTRAN 促 進管は管壁面に沿って変化する。図11には中密度の挿 入体の2つの隣接したループの間のせん断応力を示して いる。

せん断応力は直接ループワイヤーの上部でピークと なり、ワイヤーの後は最低値となる、このことは水粒子 分散液の実験によって確認することが出来る。図12に は、幾らかの粒子が、ループの後ろの低いせん断部分に 堆積しているが、原理的に空洞管部分の堆積が大きいこ とは明らかである。

図12. 水分散流。平均粒径:50 μ 比重:2420kg/m3

またループワイヤーの直後の最も低いせん断応力を シミュレーション結果、空洞管と同じレベルである。 (図11の赤線)

事例:VDU(真空蒸留残渣)供給熱交換器

壁面温度と壁面せん断応力に影響し、汚れ挙動を変 えるために、hiTRAN 挿入体が用いられている例が発見 される。

2系列の AES 型 Feed/Effluent 熱交換器の改造適用 で、hiTRAN 立体ワイヤー素子が取り付けられた。これ らの熱交換器では、管側流体(VDU 供給)は、加熱炉 に入る前に約 300℃にまで加熱される。設計条件の下 で、この熱交換器はレイノルズ(Re)数~6000 の遷移 状態領域で運転される。この熱交換器の総括伝熱係数は 管側律速である。胴側の真空残渣は、予熱 VDU 供給に よって、350℃から冷却される。

この熱交換器は 0.4m/s 程度の低い設計速度で、その結果、低い管側境膜係数と高い壁面温度、長い流体滞 留時間と低い壁万せん断応力に晒される。低い管側の摩 擦による圧力降下も、バンドル内の流体分布の不良のリ スクを大きくしている。

図13.汚れた AES 型 VDU/供給熱交換器の調査

図13は1130日運転後の汚れた空洞管熱交換器を 示している。管側の汚れと胴側の汚れが観察された。 hiTRAN 伝熱システムを挿入する前に、この熱交換器は 洗浄された。hiTRAN 挿入後の管側許容圧力損失は、 70mbar と計算された。誘発されたせん断応力は0.43Pa から0.75Pa に増加した。さらに重要なことは、管側熱 伝達速度は約4倍になり、312W/m2K から1132 W/m2K に増加した。結果として、主たる熱伝達抵抗は胴側に移 行した。hiTRAN 挿入後のプロセス情報は、10カ月にわ たって測定された。両方を比較するために、最初の300 日間のみが評価のために用いられた。最初の構成では管 側律速であり、hiTRAN システムが著しく伝熱に効果的 である範囲にある。この熱交換器の測定された総括伝熱 係数は、約40%も増加した。(図14)

図14. 空洞管と hiTRAN システムの総括伝熱係数の推 移

が期待される。

管側伝熱係数が増加すると、管側の壁面温度の低下

平均の壁面温度は空洞管の管温度に比べて、13℃低 くなっていた。より大きいのはピーク時の値が 330℃か ら 310℃になっていることである。(図15)

表2. hiTRAN 挿入前後の諸条件

Geometry	Plain	hiTRAN
	empty	
TEMA Type	AES	
Shells in Series	2	
Tube geometry	1416 x 19.05mm OD x 6096mm	
No of tube passes	of tube passes 2	
Process		
Averages over time [days]	1130	300
Shell side flow [kg/s]	28.6	25.6
Tube side flow [kg/s]	33.4	30
Shell side in/out Temp [°C]	347 / 293	343 / 286
Tube side in/out Temp [°C]	256/294	268 /309
Duty [MW]	3.79	3.54
EMTD [°C]	41.2	18.3
Average tube wall temp. [°C]	309	296
Tube side HTC [W/m2K]	312	1132
Shell side HTC [W/m2K]	647	602
Tube side velocity [m/s]	0.34	0.31
Overall coefficient [W/m2K]	147	206
Tube side Reynolds [-]	4842	5018
dp calculated [bar]	0.09	0.7
Wall shear [Pa]	0.43	0.75

300 日間の汚れ係数が計算され、hiTRAN 挿入と以 前のより長い期間とが比較された。図16では初期の汚 れは空洞管に比べて同じような挙動に見える。今後2年 間で汚れのジャンプを経験するか、hiTRAN素子の挿入 で避けることが出来るかが興味あるところである。この 期間の運転で、熱交換器の伝熱量増加による加熱炉の負 荷減少による便益は既に得られている。

図16.空洞管とhiTRAN 運転の汚れ係数の推移

図15. hiTARN 挿入前後の管壁面温度

まとめ

本報では、空洞管に置き換えて hiTRAN 管挿入体の 使用によって壁面温度と壁面ずり応力の状況の変化の可 能性について議論した。汚れ閾値モデルのためには、こ の2つの変数の情報は、期待される汚れ速度の決定する ために必要である。

壁面ずり応力はこの流動状態で、7倍に増加できる ことが示された。壁面ずり応力を測定するための、異な った実験装置が提案され、非常に良い一致を示した。測 定の結果は、CFD シミュレーションの結果とほぼ一致 した。これらのシミュレーションは、挿入体ループ間の 部分のずり応力を研究するのに理想的であり; 微粒子状 汚れの実験結果と定性的な一致を再び示した。

熱交換器性能に対する強い影響は、熱交換器の改造 シナリオで説明された。hiTRAN の評価のための全体運 転期間は、促進材の挿入による汚れの挙動の効果を明確 に結論付けるには短すぎた。それでも総括伝熱係数の増 加から得られるプロセスへの便益は明らかとなった。

熱交換器が低流速で動いており、全ての入手できる 圧力損失を利用できない場合、たとえば、小さな推進温 度差のために1パス構成採用している熱交換器には、そ の乱流形成のために、hiTRAN システムは現実的な選択 肢である。多くの汚れの負荷に対する、hiTRAN の適用 効果の信頼性を提供するため、十分な研究は完了しまし た。管挿入体の存在がある場合、汚れの速度挙動に追加 の影響があるかを明確にするためには、更なる研究が必 要です。

NOMENCLATURE (命名) $\Delta rea m^2$

Δ

11	/ fied, fil
D	diameter, m
Ea	fouling model activation energy, J/mol
F _{drag}	drag force, N
F _{shear}	shear force, N
h	heat transfer coefficient, W/m^2K
L	length, m
Nu	Nusselt, dimensionless number
n	Prandtl exponent
⊿p	pressure drop, N/m^
Pr	Prandtl, dimensionless number

Heat Exchanger Fouling and Cleaning - 2013

 $R_{\rm f}$ fouling resistance, m^KAV

gas constant, J/mol K

time, s t

R

- $T_{\rm f}$ film temperature, K
- Т temperature, K
- velocity, m/s 11
- coordinate, m y

Greek letters

α	fouling model parameter, m ^K /J
β	fouling model parameter, dimensionless
γ	fouling model parameter, m^K/J Pa
∮	fanning friction factor, dimensionless
τ	shear stress, Pa
η	dynamic viscosity, Pa s
ρ	density, kg/m ³

Subscript (添字)

i	inner
0	outer
W	wall

REFERENCES(文献)

Ebert, W., and Panchal, C.B., 1997, Analysis of Exxon crude oil slip stream coking data. Proc. Mitigation of Fouling in Industrial Heat E χ changer Equipment, San Luis Obispo, USA Begell house pp.45 1 - 460

Gough, M.J., I.J. Gibbard, G.T. Polley and A.S. McMuUan, 1995, Case studies of refinery fouling reduction. Proc. Engineering Foundation Conference on Fouling Mitigation of Industrial Heat $E \chi$ changers. California.

Meneyan, Y., Crittenden, B. 2012, Fouling thresholds in bare tubes and tubes fitted with inserts, Applied Energy, Volume 89(1), pp. 67 -73

Smeethe, A., P. Droegemueller, J. Wood, W. Bujalski, 2004, Fluid dynamics in a tube equipped with wire matrix inserts. Proc. 4th European Thermal Sciences Conference. Birmingham Wilson, D.I., PoUey, G.T., Pugh, S.J., 2005, Proceedings of the 6'* International Conference on Heat Exchanger Fouling and Cleaning- ECI Symposium Series, Kolster Irsee, Germany, June 5 – 10, Volume RP2

2017年12月7日 aPEC株域会社 業務部長 酒井昭二訳

CANON レーザードップラー速度計 技術資料 http://cweb.canon.jp/indtech/es/lineup/ldvm/technology.html 測定原理

キヤノンLDVは、電気光学結晶を使用したE/O周波数シフタを内蔵しており、それぞれの周波数差がfRになるように 周波数変調された2光束のレーザ光を入射角θで測定物に照射しています。

測定物からの散乱光は測定物の移動により発生するドップラー効果により周波数シフトをした光となり、フォトダイ オード上に生じるスペックルの干渉光はF=2Vd+fRのドップラー周波数成分を持ったビート信号となり、静止状態か らの測定が可能になっています。(dは対象物上で2光束が構成する干渉縞ピッチ)このドップラー周波数を信号処理 することにより測定物の速度を算出しています。

この商品に関するお問い合せ

キヤノンマーケティングジャパン株式会社 生産革新機器営業部 CB販売課

電話番号 03-3740-3336 ファクス 03-3740-3356

住所

〒108-8011 東京都港区港南2-16-6 CANON S TOWER